由图得,原函数的极大值点小于0.5.把答案代入验证看哪个对应的极值点符合要求即可得出答案.
【解析】
由于本题是选择题,可以用代入法来作,
由图得,原函数的极大值点小于0.5.
当m=1,n=1时,f(x)=ax(1-x)=-a+.在x=处有最值,故A错;
当m=1,n=2时,f(x)=axm(1-x)n=ax(1-x)2=a(x3-2x2+x),所以f'(x)=a(3x-1)(x-1),令f'(x)=0⇒x=,x=1,即函数在x=处有最值,故B对;
当m=2,n=1时,f(x)=axm(1-x)n=ax2(1-x)=a(x2-x3),有f'(x)=a(2x-3x2)=ax(2-3x),令f'(x)=0⇒x=0,x=,即函数在x=处有最值,故C错;
当m=3,n=1时,f(x)=axm(1-x)n=ax3(1-x)=a(x3-x4),有f'(x)=ax2(3-4x),令f'(x)=0,⇒x=0,x=,即函数在x=处有最值,故D错.
故选 B.