登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,O...
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形
(I)证明直线BC∥EF;
(II)求棱锥F-OBED的体积.
(I)利用同位角相等,两直线平行得到OB∥DE;OB=,得到B是GE的中点;同理C是FG的中点;利用三角形的中位线平行于底边,得证. (II)利用三角形的面积公式求出底面分成的两个三角形的面积,求出底面的面积;利用两个平面垂直的性质找到高,求出高的值;利用棱锥的体积公式求出四棱锥的体积. 【解析】 (I)证明:设G是线段DA与线段EB延长线的交点,由于△OAB与△ODE都是正三角形,所以OB∥DE,OB=同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,又由于G与G′都在线段DA的延长线上,所以G与G′重合,在△GED和△GFD中,由和可知B,C分别是GE,GF的中点,所以BC是△GFE的中位线,故BC∥EF (II)【解析】 由OB=1,OE=2,∠EOB=60°,知而△OED是边长为2的正三角形,故所以过点F作FQ⊥AD,交AD于点Q.由平面ABED⊥平面ACFD,FQ就是四棱锥F-OBED的高,且FQ=,所以 另外本题还可以用向量法解答,同学们可参考图片,自行解一下,解法略.
复制答案
考点分析:
相关试题推荐
设
,其中a为正实数
(Ⅰ)当a=
时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.
查看答案
已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为
.
查看答案
已知向量
,
满足(
+2
)•(
-
)=-6,|
|=1,|
|=2,则
与
的夹角为
.
查看答案
设(x-1)
21
=a
+a
1
x+a
2
x
2
+…+a
21
x
21
,则a
10
+a
11
=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.