满分5 > 高中数学试题 >

设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点...

设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
(Ⅰ)救出函数的导数,再利用f(1)=0以及f′(1)=2建立方程组,联解可得a,b的值; (Ⅱ)转化为证明函数y=f(x)-(2x-2)的最大值不超过0,用导数工具讨论单调性,可得此函数的最大值. 【解析】 (Ⅰ)f'(x)=1+2ax+, 由已知条件得:,即 解之得:a=-1,b=3 (Ⅱ)f(x)的定义域为(0,+∞),由(Ⅰ)知f(x)=x-x2+3lnx, 设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,则 = 当时0<x<1,g′(x)>0;当x>1时,g′(x)<0 所以在(0,1)上单调递增,在(1,+∞)上单调递减 ∴g(x)在x=1处取得最大值g(1)=0 即当x>0时,函数g(x)≤0 ∴f(x)≤2x-2在(0,+∞)上恒成立
复制答案
考点分析:
相关试题推荐
某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:
品种甲403397390404388400412406
品种乙419403412418408423400413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2…xn的样本方差S2=manfen5.com 满分网[(x1-manfen5.com 满分网)]2+…+(xn-manfen5.com 满分网2],其中manfen5.com 满分网为样本平均数.
查看答案
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=manfen5.com 满分网PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

manfen5.com 满分网 查看答案
△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=manfen5.com 满分网a.
(Ⅰ)求manfen5.com 满分网
(Ⅱ)若C2=b2+manfen5.com 满分网a2,求B.
查看答案
已知函数f(x)=ex-2x+a有零点,则a的取值范围是    查看答案
Sn为等差数列an的前n项和,S2=S6,a4=1则a5=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.