满分5 > 高中数学试题 >

在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为...

在平面直角坐标系xOy中,曲线C1的参数方程为manfen5.com 满分网(φ为参数),曲线C2的参数方程为manfen5.com 满分网(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=manfen5.com 满分网时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当α=manfen5.com 满分网时,l与C1,C2的交点分别为A1,B1,当α=-manfen5.com 满分网时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
(I)有曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),消去参数的C1是圆,C2是椭圆,并利用.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合,求出a及b. (II)利用C1,C2的普通方程,当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点为A2,B2,利用面积公式求出面积. 【解析】 (Ⅰ)C1是圆,C2是椭圆. 当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0), 因为这两点间的距离为2,所以a=3 当时,射线l与C1,C2交点的直角坐标分别为(0,1)(0,b), 因为这两点重合 所以b=1. (Ⅱ)C1,C2的普通方程为x2+y2=1和. 当时,射线l与C1交点A1的横坐标为, 与C2交点B1的横坐标为. 当时,射线l与C1,C2的两个交点A2, B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形. 故四边形A1A2B2B1的面积为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A、B、G、F四点共圆.
查看答案
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
查看答案
某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:
品种甲403397390404388400412406
品种乙419403412418408423400413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2…xn的样本方差S2=manfen5.com 满分网[(x1-manfen5.com 满分网)]2+…+(xn-manfen5.com 满分网2],其中manfen5.com 满分网为样本平均数.
查看答案
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=manfen5.com 满分网PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.