满分5 > 高中数学试题 >

已知函数f(x)=|x-2|-|x-5| (Ⅰ)证明:-3≤f(x)≤3; (Ⅱ...

已知函数f(x)=|x-2|-|x-5|
(Ⅰ)证明:-3≤f(x)≤3;
(Ⅱ)求不等式f(x)≥x2-8x+15的解集.
(Ⅰ)分x≤2、2<x<5、x≥5,化简f(x)=,然后即可证明-3≤f(x)≤3 (Ⅱ)由(Ⅰ)可知当x≤2时,当2<x<5时,当x≥5时,分别求出f(x)≥x2-8x+15的解集. 【解析】 (Ⅰ)f(x)=|x-2|-|x-5|= 当2<x<5时,-3≤2x-7≤3 所以,-3≤f(x)≤3 (Ⅱ)由(Ⅰ)可知 当x≤2时,f(x)≥x2-8x+15的解集为空集; 当2<x<5时,f(x)≥x2-8x+15的解集为{x|5-≤x≤5} 当x≥5时,f(x)≥x2-8x+15的解集为{x|5≤x≤6}
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,曲线C1的参数方程为manfen5.com 满分网(φ为参数),曲线C2的参数方程为manfen5.com 满分网(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=manfen5.com 满分网时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当α=manfen5.com 满分网时,l与C1,C2的交点分别为A1,B1,当α=-manfen5.com 满分网时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
查看答案
manfen5.com 满分网如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A、B、G、F四点共圆.
查看答案
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
查看答案
某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:
品种甲403397390404388400412406
品种乙419403412418408423400413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2…xn的样本方差S2=manfen5.com 满分网[(x1-manfen5.com 满分网)]2+…+(xn-manfen5.com 满分网2],其中manfen5.com 满分网为样本平均数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.