满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2...

manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD; (Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可. (Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=, 从而BD2+AD2=AB2,故BD⊥AD 又PD⊥底面ABCD,可得BD⊥PD 所以BD⊥平面PAD.故PA⊥BD (Ⅱ)如图,以D为坐标原点,AD的长为单位长, 射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则 A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1). =(-1,,0),=(0,,-1),=(-1,0,0), 设平面PAB的法向量为=(x,y,z),则 即, 因此可取=(,1,) 设平面PBC的法向量为=(x,y,z),则, 即: 可取=(0,1,),cos<>==-, 故二面角A-PB-C的余弦值为:-.
复制答案
考点分析:
相关试题推荐
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{manfen5.com 满分网}的前n项和.
查看答案
在△ABC中,B=60°,AC=manfen5.com 满分网,则AB+2BC的最大值为    查看答案
已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6.BC=2manfen5.com 满分网,则棱锥O-ABCD的体积为    查看答案
在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为manfen5.com 满分网.过Fl的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为    查看答案
若变量x,y满足约束条件manfen5.com 满分网则z=x+2y的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.