满分5 > 高中数学试题 >

在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足...

在直角坐标系xOy中,曲线C1的参数方程为manfen5.com 满分网(α为参数)M是C1上的动点,P点满足manfen5.com 满分网=2manfen5.com 满分网,P点的轨迹为曲线C2
(Ⅰ)求C2的方程
(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=manfen5.com 满分网与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程; (II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2-ρ1|求出所求. 【解析】 (I)设P(x,y),则由条件知M(,).由于M点在C1上, 所以即 从而C2的参数方程为 (α为参数) (Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ. 射线θ=与C1的交点A的极径为ρ1=4sin, 射线θ=与C2的交点B的极径为ρ2=8sin. 所以|AB|=|ρ2-ρ1|=.
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
查看答案
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足manfen5.com 满分网manfen5.com 满分网,,manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,M点的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.
查看答案
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
频数82042228
B配方的频数分布表
指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
频数412423210
(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=manfen5.com 满分网
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.