满分5 > 高中数学试题 >

已知函数f(x)=(x-k)ex. (Ⅰ)求f(x)的单调区间; (Ⅱ)求f(x...

已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k-1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值. 【解析】 (Ⅰ)f′(x)=(x-k+1)ex, 令f′(x)=0,得x=k-1, f′(x)f(x)随x的变化情况如下: ∴f(x)的单调递减区间是(-∞,k-1),f(x)的单调递增区间(k-1,+∞); (Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(0)=-k; 当0<k-1<1,即1<k<2时,由(I)知,f(x)在区间[0,k-1]上单调递减,f(x)在区间(k-1,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(k-1)=-ek-1; 当k-1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减, ∴f(x)在区间[0,1]上的最小值为f(1)=(1-k)e; 综上所述f(x)min=.
复制答案
考点分析:
相关试题推荐
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(Ⅰ)求证:DE∥平面BCP;
(Ⅱ)求证:四边形DEFG为矩形;
(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

manfen5.com 满分网 查看答案
以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
manfen5.com 满分网
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(注:方差manfen5.com 满分网,其中manfen5.com 满分网的平均数)
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=    ,N(t)的所有可能取值为    查看答案
已知函数manfen5.com 满分网若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.