满分5 > 高中数学试题 >

如图,椭圆经过点(0,1),离心率. (l)求椭圆C的方程; (2)设直线x=m...

manfen5.com 满分网如图,椭圆manfen5.com 满分网经过点(0,1),离心率manfen5.com 满分网
(l)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A′(A′与B不重合),则直线A′B与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(1)把点(0,1)代入椭圆方程求得a和b的关系,利用离心率求得a和c的关系,进而联立方程求得a和b,则椭圆的方程可得 (2)把直线方程与椭圆方程联立消去y,设出A,B的坐标,则A′的坐标可推断出,利用韦达定理表示出y1+y2和y1y2,进而可表示出A′B的直线方程,把y=0代入求得x的表达式,把x1=my1+1,x2=my2+1代入求得x=4,进而可推断出直线A′B与x轴交于定点(4,0). 【解析】 (1)依题意可得,解得a=2,b=1. 所以,椭圆C的方程是; (2)由 得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0, 设A(x1,y1),B(x2,y2) 则A′(x1,-y1). 且. 经过点A′(x1,-y1), B(x2,y2)的直线方程为. 令y=0,则 又∵x1=my1+1,x2=my2+1.∴当y=0时, 这说明,直线A′B与x轴交于定点(4,0).
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网=1(a>b>0)过点manfen5.com 满分网,且左焦点为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,证明:点Q总在某定直线上.
查看答案
已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆的圆心轨迹C的方程;
(2)是否存在直线l,使l过点(0,1),并与轨迹C交于P,Q两点,且满足manfen5.com 满分网?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.
查看答案
设椭圆manfen5.com 满分网=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为manfen5.com 满分网,则此椭圆的标准方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.