满分5 > 高中数学试题 >

已知f(x)=(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值组成的...

已知f(x)=manfen5.com 满分网(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(Ⅰ)函数单调递增导数大于等于零列出不等式解之 (Ⅱ)根据一元二次方程根与系数的关系写出不等式先看成关于a的不等式恒成立再看成关于t的一次不等式恒成立,让两端点大等于零 【解析】 (Ⅰ)f'(x)==, ∵f(x)在[-1,1]上是增函数, ∴f'(x)≥0对x∈[-1,1]恒成立, 即x2-ax-2≤0对x∈[-1,1]恒成立.① 设φ(x)=x2-ax-2, 方法一:φ ①⇔⇔-1≤a≤1, ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}.方法二: ①⇔或 ⇔0≤a≤1或-1≤a≤0 ⇔-1≤a≤1. ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}. (Ⅱ)由,得x2-ax-2=0,∵△=a2+8>0 ∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2, 从而|x1-x2|==. ∵-1≤a≤1,∴|x1-x2|=≤3. 要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立, 当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立, 即m2+tm-2≥0对任意t∈[-1,1]恒成立.② 设g(t)=m2+tm-2=mt+(m2-2), 方法一: ②⇔g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0, ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}. 方法二: 当m=0时,②显然不成立; 当m≠0时, ②⇔m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0 ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
复制答案
考点分析:
相关试题推荐
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0、02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
查看答案
设函数f(x)=x-In(x+m),其中常数m为整数.
(1)当m为何值时,f(x)≥0;
(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x∈(a,b),使g(x)=0.
试用上述定理证明:当整数m>1时,方程f(x)=0,在[e-m-m,e2m-m]内有两个实根.
查看答案
设函数manfen5.com 满分网
(1)证明:当0<a<b,且f(a)=f(b)时,ab>1;
(2)点P (x,y) (0<x<1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x表达).
查看答案
设a,b为互不相等的正整数,方程ax2+8x+b=0的两个实根为x1,x2(x1≠x2),且|x1|<|x2|<1,则a+b的最小值为    查看答案
已知函数f(x)满足:f(a+b)=f(a)•f(b),f(1)=2,则manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.