满分5 > 高中数学试题 >

已知函数f(x)定义域为(0,2),求下列函数的定义域: (1)y=f(x2)+...

已知函数f(x)定义域为(0,2),求下列函数的定义域:
(1)y=f(x2)+23;
(2)y=manfen5.com 满分网
(1)本题是求复合函数的定义域,由复合函数的性质知,内层函数的值域即外层函数的定义域,故可令内层函数属于外层函数的定义域(0,2),解此一元二次不等式求复合函数的定义域; (2)本题中求函数的定义域要保证内层函数的值域即外层函数的定义域,还要注意分母不为0且分母中根号下非负,以及真数大于0,故求解这个函数的定义域要涉及到好几个不等式,把它们联立成不等式组,求其解集即可. 【解析】 函数f(x2)是由u=x2与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x2<2.求x的取值范围. (1)由0<x2<2,得,且x≠0 所以函数的定义域为{x|,且x≠0} (2)由(1),解得1<x< 即所求函数的定义域为(1,)
复制答案
考点分析:
相关试题推荐
已知函数f(x)(x∈R)满足下列条件:对任意的实数x1,x2都有λ(x1-x22≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,其中λ是大于0的常数,设实数a,a,b满足f(a)=0和b=a-λf(a)
(Ⅰ)证明λ≤1,并且不存在b≠a,使得f(b)=0;
(Ⅱ)证明(b-a2≤(1-λ2)(a-a2
查看答案
已知f(x)=manfen5.com 满分网(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0、02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
查看答案
设函数f(x)=x-In(x+m),其中常数m为整数.
(1)当m为何值时,f(x)≥0;
(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x∈(a,b),使g(x)=0.
试用上述定理证明:当整数m>1时,方程f(x)=0,在[e-m-m,e2m-m]内有两个实根.
查看答案
设函数manfen5.com 满分网
(1)证明:当0<a<b,且f(a)=f(b)时,ab>1;
(2)点P (x,y) (0<x<1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x表达).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.