满分5 > 高中数学试题 >

若不等式2x-1>m(x2-1)对满足|m|≤2的所有m都成立,求x的取值范围....

若不等式2x-1>m(x2-1)对满足|m|≤2的所有m都成立,求x的取值范围.
将不等式2x-1>m(x2-1)化为含参数x的m的一次不等式(x2-1)m-(2x-1)<0,再令f(m)=(x2-1)m-(2x-1),只要 f(-2)<0,f(2)<0即可. 【解析】 原不等式化为(x2-1)m-(2x-1)<0. 令f(m)=(x2-1)m-(2x-1)(-2≤m≤2). 则 解得<x<.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lg(ax2+2x+1).
(1)若f(x)的定义域是R,求实数a的取值范围及f(x)的值域;
(2)若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.
查看答案
定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
查看答案
(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;
(2)试用上面结论证明下面的命题:若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.
查看答案
作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|
查看答案
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.