满分5 > 高中数学试题 >

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD...

manfen5.com 满分网如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D-ABC的体积.
(Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD; 解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证. (Ⅱ),由高和底面积,求得三棱锥B-ACD的体积即是几何体D-ABC的体积. 【解析】 (Ⅰ) 【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC 取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC, 且平面ADC∩平面ABC=AC,DO⊂平面ACD,从而OD⊥平面ABC, ∴OD⊥BC 又AC⊥BC,AC∩OD=O, ∴BC⊥平面ACD 【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC ∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂面ABC,∴BC⊥平面ACD (Ⅱ)由(Ⅰ)知,BC为三棱锥B-ACD的高,且,S△ACD=×2×2=2, 所以三棱锥B-ACD的体积为:, 由等积性知几何体D-ABC的体积为:.
复制答案
考点分析:
相关试题推荐
从某高中人校新生中随机抽取100名学生,测得身高情况如下:[160,165),5;[165,170),20;[170,175),35;[175,180),30;[180,185),10
按身高分层抽样,现抽取20人参加某项活动,其中3名学生担任迎宾工作,记这3名学生中“身高低于170cm”的人数为ξ,求ξ的期望.
查看答案
如图,测量河对岸的塔形建筑AB,A为塔的顶端,B为塔的底端,河两岸的地面上任意一点与塔底端B处在同一海拔水平面上,现给你一架测角仪(可以测量仰角、俯角和视角),再给你一把尺子(可以测量地面上两点问距离),图中给出的是在一侧河岸地面C点测得仰角∠ACB=α,请设计一种测量塔形建筑高度AB的方法(其中测角仪支架高度忽略不计,计算结果可用测量数据所设字母表示).

manfen5.com 满分网 查看答案
manfen5.com 满分网若y=f(x)的图象如图所示,定义F(x)=manfen5.com 满分网,x∈[0,1],则下列对F(x)的性质描述正确的有   
(1)F(x)是[0,1]上的增函数;
(2)F′(x)=f(x);
(3)F(x)是[0,1]上的减函数;
(4)∃x∈[0,1]使得F(1)=f(x). 查看答案
manfen5.com 满分网地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为manfen5.com 满分网,则两直线所夹锐角的弧度数为    查看答案
已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是    cm3
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.