满分5 > 高中数学试题 >

已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且(λ为非零参数...

已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且manfen5.com 满分网(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明manfen5.com 满分网;当λ>1时,证明manfen5.com 满分网
(1)根据把x1=x2=1代入求得x3,同理可求得x4=λ3,x5=λ6,进而根据等比中项的性质求得λ. (2)根据根据不等式性质可知有≥…≥=λn-1;=…=λn-1 进而可得出,再看当λ>1时得出≥,即≥,代入,原式得证. (1)【解析】 由已知x1=x2=1,且 ∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1. (2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有≥…≥ =λn-1; 另一方面,=…=λn-1. 因此,=(n∈N*).故(n∈N*). (Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*). 又由(Ⅰ)(n∈N*),则≥, 从而≥(n∈N*). ∴
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中x∈R,θ为参数,且0≤θ≤manfen5.com 满分网
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(II)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
查看答案
如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱manfen5.com 满分网
(I)证明FO∥平面CDE;
(II)设manfen5.com 满分网,证明EO⊥平面CDF.

manfen5.com 满分网 查看答案
某射手进行射击训练,假设每次射击击中目标的概率为manfen5.com 满分网,且各次射击的结果互不影响.
(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);
(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);
查看答案
如图,在△ABC中,AC=2,BC=1,manfen5.com 满分网
(1)求AB的值;
(2)求sin(2A+C)的值.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,点A表示坐标原点,点An(n,f(n))(n∈N*),若向量manfen5.com 满分网,θnmanfen5.com 满分网manfen5.com 满分网的夹角,(其中manfen5.com 满分网),设Sn=tanθ1+tanθ2+…+tanθn,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.