(1)由三视图可知该几何体为棱柱,底面为直角梯形,上下底边长分别为1和2,高为1,侧棱垂直于底面,长为1.由此可画出直观图.
(2)分别求出个面的面积,之和即为表面积;
法一:将该几何体看作一个长方体被截去一个角,而且被截去的部分为一直三棱柱,利用长方体和棱柱的体积公式求解即可.
法二:该几何体为直四棱柱,体面为直角梯形,故利用棱柱的体积公式求解即可.
【解析】
(1)由三视图可知该几何体为棱柱,底面为直角梯形,上下底边长分别为1和2,高为1,侧棱垂直于底面,长为1.直观图如图所示:
(2)法一:由三视图可知该几何体是长方体被截去一个角,且该几何体的体积是以A1A,A1D1,A1B1为棱的长方体的体积的,
在直角梯形AA1B1B中,作BE⊥A1B1于E,则AA1EB是正方形,
∴AA1=BE=1.
在Rt△BEB1中,BE=1,EB1=1,
∴BB1=.
∴几何体的表面积S=S正方形AA1D1D+2S梯形AA1B1B+S矩形BB1C1C+S正方形ABCD+S矩形A1B1C1D1
=1+2××(1+2)×1+1×+1+1×2
=7+(m2).
∴几何体的体积V=×1×2×1=(m3),
∴该几何体的表面积为(7+)m2,体积为m3.
法二:几何体也可以看作是以AA1B1B为底面的直四棱柱,其表面积求法同法一,
V直四棱柱D1C1CD-A1B1BA=Sh
=×(1+2)×1×1=(m3).
∴几何体的表面积为(7+)m2,体积为m3.