满分5 > 高中数学试题 >

已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程...

已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
根据指数函数的单调性求出命题p为真命题时a的范围,利用二次方程的实根分布求出命题q为真命题时a的范围; 据复合命题的真假与构成其简单命题真假的关系将“p或q为真,p且q为假”转化为p q的真假,列出不等式解得. 【解析】 若p真,则f(x)=(2a-6)x在R上单调递减, ∴0<2a-6<1, ∴3<a<. 若q真,令f(x)=x2-3ax+2a2+1,则应满足 ∴ ∴a>, 又由题意应有p真q假或p假q真. ①若p真q假,则,a无解. ②若p假q真,则 ∴<a≤3或a≥.
复制答案
考点分析:
相关试题推荐
判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假.
(1)有一个实数α,sin2α+cos2α≠1;
(2)任何一条直线都存在斜率;
(3)所有的实数a,b,方程ax+b=0恰有唯一解;
(4)存在实数x,使得manfen5.com 满分网=2.
查看答案
已知集合A={x|x2-4x-5≤0},B={x|x2-2x-m<0}.
(1)当m=3时,求A∩∁RB;
(2)若A∩B={x|-1≤x<4},求实数m的值.
查看答案
已知集合A={x|-1<x<2},B={x|x2+4x-5>0},C={x|m-1<x<m+1,m∈R},
(1)求A∩B;
(2)若(A∩B)⊆C,求m的取值范围.
查看答案
设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点个数,则f(4)=    ,当n>4时f(n)=    (用n表示) 查看答案
已知p:-4<x-a<4,q:(x-2)(3-x)>0,若¬p是¬q的充分条件,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.