满分5 > 高中数学试题 >

如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O...

如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.
(Ⅰ)证明:AP⊥BC;
(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B-AP-C的大小.

manfen5.com 满分网
(I)由题意.因为PO⊥平面ABC,垂足O落在线段AD上所以BC⊥PO.有AB=AC,D为BC的中点,得到BC⊥AD,进而得到线面垂直,即可得到所证; (II)有(I)利用面面垂直的判定得到PA⊥平面BMC,再利用二面角的定义得到二面角的平面角,然后求出即可. 【解析】 (I)由题意画出图如下: 由AB=AC,D为BC的中点,得AD⊥BC, 又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC, ∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA. (II)如图,在平面PAB中作BM⊥PA于M,连接CM, ∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B-AP-C的平面角, 在直角三角形ADB中,; 在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6, 在直角三角形POA中,PA2=AO2+OP2=25,得PA=5, 又cos∠BPA=,从而. 故BM=, ∵BM2+MC2=BC2,∴二面角B-AP-C的大小为90°.
复制答案
考点分析:
相关试题推荐
已知公差不为0的等差数列{an}的首项a1(a1∈R),且manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较manfen5.com 满分网manfen5.com 满分网的大小.
查看答案
manfen5.com 满分网已知函数manfen5.com 满分网,x∈R,A>0,manfen5.com 满分网.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).
(Ⅰ)求f(x)的最小正周期及φ的值;
(Ⅱ)若点R的坐标为(1,0),manfen5.com 满分网,求A的值.
查看答案
若数列manfen5.com 满分网中的最大项是第k项,则k=    查看答案
若实数x,y满足x2+y2+xy=1,则x+y的最大值是    查看答案
若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为manfen5.com 满分网,则α和β的夹角θ的范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.