满分5 > 高中数学试题 >

已知函数f(x)=lnx-ax2+(2-a)x. (I)讨论f(x)的单调性; ...

已知函数f(x)=lnx-ax2+(2-a)x.
(I)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x<manfen5.com 满分网时,f(manfen5.com 满分网+x)>f(manfen5.com 满分网-x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x,证明:f′(x)<0.
(I)求导,并判断导数的符号,确定函数的单调区间;(II)构造函数g(x)=f(+x)-f(-x),利用导数求函数g(x)当0<x<时的最小值大于零即可,(III)设出函数y=f(x)的图象与x轴交于A,B两点的横坐标,根据(I).(II)结论,即可证明结论. 【解析】 (I)函数f(x)的定义域为(0,+∞), f′(x)==-, ①若a>0,则由f′(x)=0,得x=,且当x∈(0,)时,f′(x)>0, 当x∈(,+∞)时,f′(x)<0, 所以f(x)在(0,)单调递增,在(,+∞)上单调递减; ②当a≤0时,f(x)>0恒 成立,因此f(x)在(0,+∞)单调递增; (II)设函数g(x)=f(+x)-f(-x),则g(x)=ln(1+ax)-ln(1-ax)-2ax, g′(x)==, 当x∈(0,)时,g′(x)>0,而g(0)=0, 所以g(x)>0, 故当0<x<时,f(+x)>f(-x); (III)由(I)可得,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点, 故a>0,从而f(x)的最大值为f(),且f()>0, 不妨设A(x1,0),B(x2,0),0<x1<x2, 则0<x1<<x2, 由(II)得,f(-x1)=f()>f(x1)=f(x2)=0, 又f(x)在(,+∞)单调递减, ∴-x1<x2,于是x=, 由(I)知,f′( x)<0.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲403397390404388400412406
品种乙419403412418408423400413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2,…,xa的样本方差s2=manfen5.com 满分网[(x1-manfen5.com 满分网2+(x1-manfen5.com 满分网2+…+(xn-manfen5.com 满分网2],其中manfen5.com 满分网为样本平均数.
查看答案
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=manfen5.com 满分网PD.
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.

manfen5.com 满分网 查看答案
已知等差数列{an}满足a2=0,a6+a8=-10
(I)求数列{an}的通项公式;
(II)求数列{manfen5.com 满分网}的前n项和.
查看答案
已知函数f(x)=Atan(ωx+φ)(ω>0,|ω|<manfen5.com 满分网),y=f(x)的部分图象如图,则f(manfen5.com 满分网)=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.