满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,...

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.

manfen5.com 满分网
(I)由已知条件可得ACBD,PABD,根据直线与平面垂直的判定定理可证 (II)结合已知条件,设AC与BD的交点为O,则OB⊥OC,故考虑分别以OB,OC,为x轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系, 设PB与AC所成的角为θ,则,代入公式可求 (III)分别求平面PBC的法向量,平面PDC的法向量                           由平面PBC⊥平面PDC可得从而可求t即PA 【解析】 (I)证明:因为四边形ABCD是菱形,所以AC⊥BD, 又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A 所以BD⊥平面PAC (II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2, 所以BO=1,AO=OC=, 以O为坐标原点,分别以OB,OC,为x轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O-xyz,则 P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0) 所以, 设PB与AC所成的角为θ,则cosθ=| (III)由(II)知,设, 则 设平面PBC的法向量=(x,y,z) 则=0, 所以令, 平面PBC的法向量所以, 同理平面PDC的法向量,因为平面PBC⊥平面PDC, 所以=0,即-6+=0,解得t=, 所以PA=.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于manfen5.com 满分网a2
其中,所有正确结论的序号是    查看答案
已知函数manfen5.com 满分网若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是    查看答案
用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有    个.(用数字作答) 查看答案
在等比数列{an}中,a1=manfen5.com 满分网,a4=-4,则公比q=    ;|a1|+|a2|+…+|an|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.