满分5 > 高中数学试题 >

已知函数. (Ⅰ)求f(x)的单调区间; (Ⅱ)若对于任意的x∈(0,+∞),都...

已知函数manfen5.com 满分网
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤manfen5.com 满分网,求k的取值范围.
(I)求导,令导数等于零,解方程,跟据f′(x),f(x)随x的变化情况即可求出函数的单调区间; (Ⅱ)根据若对于任意的x∈(0,+∞),都有f(x)≤,利用导数求函数f(x)在区间(0,+∞)的最大值,即可求出k的取值范围. 【解析】 (Ⅰ)=, 令f′(x)=0,得x=±k 当k>0时,f′(x)f(x)随x的变化情况如下: x (-,-k) -k (-k,k) k (k,+) f′(x) + - + F(x) 4k2e-1 所以,f(x)的单调递增区间是(-∞,-k),和(k,+∞),单调递减区间是(-k,k); 当k<0时,f′(x)f(x)随x的变化情况如下: x (-,-k) -k (k,-k) -k (-k,+) f′(x) - + - F(x) 4k2e-1 所以,f(x)的单调递减区间是(-∞,k),和(-k,+∞),单调递增区间是(k,-k); (Ⅱ)当k>0时,有f(k+1)=,不合题意, 当k<0时,由(I)知f(x)在(0,+∞)上的最大值是f(-k)=, ∴任意的x∈(0,+∞),f(x)≤,⇔f(-k)=≤, 解得-, 故对于任意的x∈(0,+∞),都有f(x)≤,k的取值范围是-.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.
(注:方差manfen5.com 满分网,其中manfen5.com 满分网为x1,x2,…xn的平均数)
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于manfen5.com 满分网a2
其中,所有正确结论的序号是    查看答案
已知函数manfen5.com 满分网若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.