满分5 > 高中数学试题 >

已知函数f(x)=,g(x)=alnx,a∈R. (1)若曲线y=f(x)与曲线...

已知函数f(x)=manfen5.com 满分网,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ.
首先分析对于(1)已知曲线y=f(x)与曲线y=g(x)在交点处有相同的切线,求a的值及该切线的方程,考虑到求解导函数的方法,先求出交点,再根据切线相等求出a,最后由直线上一点及斜率求出直线方程即可. 对于(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ;首先解出h(x)的函数表达式,要求最值考虑到应用函数的导函数的性质,先求出h(x)的导函数h′(x),再分类讨论当a>0和a≤0时的情况求出极小值即可. 解(1)已知函数f(x)=,g(x)=alnx,a∈R. 则:f′(x)=,g′(x)=(x>0), 由已知曲线y=f(x)与曲线y=g(x)在交点处有相同的切线,) 故有=alnx且=, 解得a=,x=e2, ∵两条曲线交点的坐标为(e2,e)切线的斜率为k=f′(e2)=, 所以切线的方程为y-e=(x-e2); (2)由条件知h(x)=-alnx(x>0), ∴h′(x)=, (Ⅰ)当a>0时,令h′(x)=0,解得x=4a2, 所以当0<x<4a2时h′(x)<0,h(x)在(0,4a2)上递减; 当x>4a2时,h′(x)>0,h(x)在(0,4a2)上递增. 所以x=4a2是h(x)在(0,+∞)上的唯一极值点, 且是极小值点,从而也是h(x)的最小值点. 所以Φ(a)=h(4a2)=2a-aln4a2=2 (Ⅱ)当a≤0时,h(x)=-alnx(x>0),h(x)在(0,+∞)递增,无最小值. 综上知,h(x)的最小值Φ(a)的解析式为2a(1-ln2a)(a>0).
复制答案
考点分析:
相关试题推荐
某工艺品加工厂准备生产具有收藏价值的奥运会标志--“中国印•舞动的北京”和奥运会吉祥物--“福娃”.该厂所用的主要原料为A、B两种贵金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大?最大利润为多少?
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案
为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组.每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射药物A和药物B后的实验结果.(疱疹面积单位:mm2
manfen5.com 满分网

(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;manfen5.com 满分网
(2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.
manfen5.com 满分网
附:manfen5.com 满分网
查看答案
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网manfen5.com 满分网
(Ⅱ)若c-b=1,求a的值.
查看答案
manfen5.com 满分网如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则线段CD的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.