满分5 > 高中数学试题 >

已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时...

已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=   
把要求零点的函数,变成两个基本初等函数,根据所给的a,b的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n的值. 【解析】 设函数y=logax,m=-x+b 根据2<a<3<b<4, 对于函数y=logax 在x=2时,一定得到一个值小于1, 在同一坐标系中划出两个函数的图象,判断两个函数的图形的交点在(2,3)之间, ∴函数f(x)的零点x∈(n,n+1)时,n=2, 故答案为:2
复制答案
考点分析:
相关试题推荐
设函数f(x)=manfen5.com 满分网(x>0),观察:
 f1(x)=f(x)=manfen5.com 满分网
 f2(x)=f(f1(x))=manfen5.com 满分网
 f3(x)=f(f2(x))=manfen5.com 满分网
 f4(x)=f(f3(x))=manfen5.com 满分网

根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=    查看答案
若(x-manfen5.com 满分网6式的常数项为60,则常数a的值为    查看答案
执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是   
manfen5.com 满分网 查看答案
设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若manfen5.com 满分网(λ∈R),manfen5.com 满分网(μ∈R),且manfen5.com 满分网,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上
查看答案
如图是长和宽分别相等的两个矩形.给定下列三个命题:
①存在三棱柱,其正(主)视图、俯视图如下图;
②存在四棱柱,其正(主)视图、俯视图如下图;
③存在圆柱,其正(主)视图、俯视图如下图.
其中真命题的个数是 ( )
manfen5.com 满分网
A.3
B.2
C.1
D.0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.