满分5 > 高中数学试题 >

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中...

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n
本题考查的是数列求和问题.在解答时: (Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式; (Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前2n项和的求解. 【解析】 (Ⅰ)当a1=3时,不符合题意; 当a1=2时,当且仅当a2=6,a3=18时符合题意; 当a1=10时,不符合题意; 所以a1=2,a2=6,a3=18, ∴公比为q=3, 故:an=2•3n-1,n∈N*. (Ⅱ)∵bn=an+(-1)nlnan =2•3n-1+(-1)nln(2•3n-1) =2•3n-1+(-1)n[ln2+(n-1)ln3] =2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3 ∴S2n=b1+b2+…+b2n =2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3 = =32n+nln3-1 ∴数列{bn}的前2n项和S2n=32n+nln3-1.
复制答案
考点分析:
相关试题推荐
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:AA1⊥BD;
(Ⅱ)证明:CC1∥平面A1BD.
manfen5.com 满分网
查看答案
甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
查看答案
在△ABC中,内角A,B,C的对边分别为a,b,c.已知manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)若cosB=manfen5.com 满分网,△ABC的周长为5,求b的长.
查看答案
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=    查看答案
已知双曲线manfen5.com 满分网和椭圆manfen5.com 满分网有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.