满分5 > 高中数学试题 >

如果函数f(x)=x2+mx+m+2的一个零点是0,则另一个零点是 .

如果函数f(x)=x2+mx+m+2的一个零点是0,则另一个零点是    
先由题意求出m的值,然后解方程求出另一个零点. 【解析】 依题意知:m=-2. ∴f(x)=x2-2x, ∴方程x2-2x=0的另一个根为2, 即另一个零点是2. 故答案:2.
复制答案
考点分析:
相关试题推荐
如果函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是     查看答案
在平面直角坐标系xOy中,已知椭圆manfen5.com 满分网.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|∙|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

manfen5.com 满分网 查看答案
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为manfen5.com 满分网立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.

manfen5.com 满分网 查看答案
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n
查看答案
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:AA1⊥BD;
(Ⅱ)证明:CC1∥平面A1BD.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.