满分5 > 高中数学试题 >

已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)内单调...

已知f(x)=manfen5.com 满分网(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)利用函数单调性定义进行证明. (2)利用函数单调性定义,进而解含有a的不等式即可得解. 【解析】 (1)证明任设x1<x2<-2, 则f(x1)-f(x2)=- =. ∵(x1+2)(x2+2)>0,x1-x2<0, ∴f(x1)-f(x2)<0即f(x1)<f(x2), ∴f(x)在(-∞,-2)内单调递增. (2)解任设1<x1<x2,则f(x1)-f(x2)=- = ∵a>0,x2-x1>0, ∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立, ∴a≤1. 综上所述,0<a≤1.
复制答案
考点分析:
相关试题推荐
已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
查看答案
若函数y=x2-3x-4的定义域为[0,m],值域为[-manfen5.com 满分网,-4],则m的取值范围是    查看答案
若函数f(x)=(m-1)x2+mx+3 (x∈R)是偶函数,则f(x)的单调减区间是    查看答案
已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m的取值范围是     查看答案
关于下列命题:
①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y=manfen5.com 满分网的定义域是{x|x>2},则它的值域是{y|y≤manfen5.com 满分网};
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是     .(注:把你认为不正确的命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.