满分5 > 高中数学试题 >

汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下...

汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本一均数之差的绝对值不超过0.5的概率.
(I)根据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,得每个个体被抽到的概率,列出关系式,得到n的值 (II)由题意知本题是一个古典概型,试验发生包含的事件数和满足条件的事件数,可以通过列举数出结果,根据古典概型的概率公式得到结果. (III)首先做出样本的平均数,做出试验发生包含的事件数,和满足条件的事件数,根据古典概型的概率公式得到结果. 【解析】 (Ⅰ)设该厂这个月共生产轿车n辆, 由题意得=, ∴n=2000, ∴z=2000-(100+300)-150-450-600=400. (Ⅱ)设所抽样本中有a辆舒适型轿车, 由题意,得a=2. 因此抽取的容量为5的样本中, 有2辆舒适型轿车,3辆标准型轿车. 用A1,A2表示2辆舒适型轿车, 用B1,B2,B3表示3辆标准轿车, 用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”, 则基本事件空间包含的基本事件有: (A1,A2),(A1B1),(A1B2), (A1,B3,),(A2,B1),(A2,B2)(A2,B3), (B1B2),(B1,B3,),(B2,B3),共10个, 事件E包含的基本事件有: (A1A2),(A1,B1,),(A1,B2),(A1,B3), (A2,B1),(A2,B2),(A2,B3),共7个, 故 P(E)=, 即所求概率为. (Ⅲ)样本平均数=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9. 设D表示事件“从样本中任取一数, 该数与样本平均数之差的绝对不超过0.5”, 则基本事件空间中有8个基本事件, 事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个, ∴P(D)=,即所求概率为.
复制答案
考点分析:
相关试题推荐
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(0<θ<π)在x=π处取最小值.
(1)求θ的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知manfen5.com 满分网,求角C.
查看答案
设函数f(x)=cos(2x+manfen5.com 满分网)+sin2x.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=manfen5.com 满分网,f(manfen5.com 满分网)=-manfen5.com 满分网,且C为非钝角,求sinA.
查看答案
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为    元. 查看答案
若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.