等比数列{a
n}的前n项和为S
n,已知对任意的n∈N
*,点(n,S
n),均在函数y=b
x+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记b
n=
(n∈N
*),求数列{b
n}的前n项和T
n.
考点分析:
相关试题推荐
汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
| 轿车A | 轿车B | 轿车C |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本一均数之差的绝对值不超过0.5的概率.
查看答案
如图,在直四棱柱ABCD-A
1B
1C
1D
1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA
1=2,E,E
1分别是棱AD,AA
1的中点.
(1)设F是棱AB的中点,证明:直线EE
1∥平面FCC
1;
(2)证明:平面D
1AC⊥平面BB
1C
1C.
查看答案
已知函数
(0<θ<π)在x=π处取最小值.
(1)求θ的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知
,求角C.
查看答案
设函数f(x)=cos(2x+
)+sin
2x.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=
,f(
)=-
,且C为非钝角,求sinA.
查看答案
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为
元.
查看答案