满分5 > 高中数学试题 >

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程;...

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为manfen5.com 满分网
(1)求双曲线C的方程;
(2)若直线manfen5.com 满分网与双曲线C恒有两个不同的交点A和B,且manfen5.com 满分网(其中O为原点).求k的取值范围.
(1)由双曲线的右焦点与右顶点易知其标准方程中的c、a,进而求得b,则双曲线标准方程即得; (2)首先把直线方程与双曲线方程联立方程组,然后消y得x的方程,由于直线与双曲线恒有两个不同的交点,则关于x的方程必为一元二次方程且判别式大于零,由此求出k的一个取值范围;再根据一元二次方程根与系数的关系用k的代数式表示出xA+xB,xAxB,进而把条件转化为k的不等式,又求出k的一个取值范围,最后求k的交集即可. 【解析】 (1)设双曲线方程为(a>0,b>0). 由已知得. 故双曲线C的方程为. (2)将. 由直线l与双曲线交于不同的两点得 即.① 设A(xA,yA),B(xB,yB), 则, 而=. 于是.② 由①、②得. 故k的取值范围为.
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左.右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设manfen5.com 满分网manfen5.com 满分网
(Ⅰ)证明:λ=1-e2
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
查看答案
manfen5.com 满分网如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.
(1)写出直线l的方程;
(2)求x1x2与y1y2的值;
(3)求证:OM⊥ON.
查看答案
已知F1、F2是椭圆manfen5.com 满分网+y2=1的两个焦点,P是该椭圆上的一个动点,则|PF1|•|PF2|的最大值是    查看答案
过点M(3,-1)且被点M平分的双曲线manfen5.com 满分网的弦所在直线方程为    查看答案
若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.