满分5 > 高中数学试题 >

如图,正三棱柱ABC-A1B1C1的底面边长为a,点M在边BC上,△AMC1是以...

如图,正三棱柱ABC-A1B1C1的底面边长为a,点M在边BC上,△AMC1是以点M为直角顶点的等腰直角三角形.
(Ⅰ)求证点M为边BC的中点;
(Ⅱ)求C到平面AMC1的距离;
(Ⅲ)求二面角M-AC1-C的大小.

manfen5.com 满分网
(Ⅰ)根据等腰直角三角形,可得AM⊥C1M且AM=C1M,根据三垂线定理可知AM⊥CM,而底面ABC为边长为a的正三角形,则即可证得点M为BC边的中点; (Ⅱ)过点C作CH⊥MC1,根据线面垂直的判定定理可知AM⊥平面C1CM,CH⊥平面C1AM,则CH即为点C到平面AMC1的距离,根据等面积法可求出CH的长; (Ⅲ)过点C作CI⊥AC1于I,连HI,根据三垂线定理可知HI⊥AC1,根据二面角的平面角的定义可知∠CIH是二面角M-AC1-C的平面角,在直角三角形ACC1中利用等面积法可求出CI,即可求出二面角M-AC1-C的大小. 【解析】 (Ⅰ)∵△AMC1为以点M为直角顶点的等腰直角三角形, ∴AM⊥C1M且AM=C1M ∵三棱柱ABC-A1B1C1,∴CC1⊥底面ABC ∴C1M在底面内射影为CM,AM⊥CM. ∵底面ABC为边长为a的正三角形, ∴点M为BC边的中点 (Ⅱ)过点C作CH⊥MC1,由(Ⅰ)知AM⊥C1M且AM⊥CM, ∴AM⊥平面C1CM∵CH在平面C1CM内, ∴CH⊥AM, ∴CH⊥平面C1AM 由(Ⅰ)知, ∴ ∴ ∴点C到平面AMC1的距离为底面边长为 (Ⅲ)过点C作CI⊥AC1于I,连HI, ∵CH⊥平面C1AM, ∴HI为CI在平面C1AM内的射影, ∴HI⊥AC1,∠CIH是二面角M-AC1-C的平面角, 在直角三角形ACC1中, ∴∠CIH=45°, ∴二面角M-AC1-C的大小为45°
复制答案
考点分析:
相关试题推荐
如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

manfen5.com 满分网 查看答案
已知直线l上有两定点A、B,线段AC⊥l,BD⊥l,AC=BD=a且AC与BD成120°角,求AB与CD间的距离.

manfen5.com 满分网 查看答案
已知正方体ABCD-A1B1C1D1的边长为a,E、F分别是棱A1B1、CD的中点.
(1)证明:截面C1EAF⊥平面ABC1
(2)求点B到截面C1EAF的距离.

manfen5.com 满分网 查看答案
ABCD是正方形,边长为7 cm,MN∥AB且交BC于点M,交DA于点N,若AN=3 cm,沿MN把正方形折成如图所示的二面角A-MN-D,大小为60°,求图中异面直线MN与BD间的距离.

manfen5.com 满分网 查看答案
已知二面角α-PQ-β为60°,点A和B分别在平面α和平面β内,点C在棱PQ上∠ACP=∠BCP=30°,CA=CB=a.
(1)求证:AB⊥PQ;
(2)求点B到平面α的距离;
(3)设R是线段CA上的一点,直线BR与平面α所成的角为45°,求CR的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.