满分5 > 高中数学试题 >

先后2次抛掷一枚骰子,将得到的点数分别记为a,b. (1)求直线ax+by+5=...

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
本题考查的知识点是古典概型,我们要列出一枚骰子连掷两次先后出现的点数所有的情况个数 (1)再根求出满足条件直线ax+by+5=0与圆x2+y2=1的事件个数,然后代入古典概型公式即可求解; (2)再根求出满足条件a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的事件个数,然后代入古典概型公式即可求解. 【解析】 (1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是 即:a2+b2=25,由于a,b∈{1,2,3,4,5,6} ∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况. ∴直线ax+by+c=0与圆x2+y2=1相切的概率是 (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36. ∵三角形的一边长为5 ∴当a=1时,b=5,(1,5,5)1种 当a=2时,b=5,(2,5,5)1种 当a=3时,b=3,5,(3,3,5),(3,5,5)2种 当a=4时,b=4,5,(4,4,5),(4,5,5)2种 当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5), (5,4,5),(5,5,5),(5,6,5)6种 当a=6时,b=5,6,(6,5,5),(6,6,5)2种 故满足条件的不同情况共有14种 故三条线段能围成不同的等腰三角形的概率为.
复制答案
考点分析:
相关试题推荐
用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖     块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是     manfen5.com 满分网 查看答案
如图,在圆心角为90°的扇形中,以圆心O为起点作射线OC,求使得∠AOC 和∠BOC都不小于30°的概率    
manfen5.com 满分网 查看答案
设点(p,q)在平面区域内D={(p,q)||p|≤3,|q|≤3}中按均匀分布出现,则方程x2+2px-q2+1=0的两个根都是实数的概率    查看答案
甲乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一人15分钟,过时即可离去,则两人会面的概率是    查看答案
设点O在△ABC的内部且满足:manfen5.com 满分网,现将一粒豆子随机撒在△ABC中,则豆子落在△OBC中的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.