满分5 > 高中数学试题 >

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)...

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
(1)根据g(x)=f(x)-f'(x)是奇函数,且f'(x)=3x2+2bx+c能够求出b与c的值. (2)对g(x)进行求导,g'(x)>0时的x的取值区间为单调递增区间,g'(x)<0时的x的取值区间为单调递减区间.g'(x)=0时的x函数g(x)取到极值. 【解析】 (Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c. 从而g(x)=f(x)-f'(x)=x3+bx2+cx-(3x2+2bx+c)=x3+(b-3)x2+(c-2b)x-c 是一个奇函数,所以g(0)=0得c=0,由奇函数定义得b=3; (Ⅱ)由(Ⅰ)知g(x)=x3-6x,从而g'(x)=3x2-6, 当g'(x)>0时,x<-或x>, 当g'(x)<0时,-<x<, 由此可知,的单调递增区间;的单调递减区间; g(x)在x=时取得极大值,极大值为,g(x)在x=时取得极小值,极小值为.
复制答案
考点分析:
相关试题推荐
如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

manfen5.com 满分网 查看答案
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现在可供选用的不同添加剂有6种,其中芳香度为1的添加剂1种,芳香度为2的添加剂2种,芳香度为3的添加剂3种.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.
(Ⅰ)求所选用的两种不同的添加剂的芳香度之和为3的概率;
(Ⅱ)求所选用的两种不同的添加剂的芳香度之和为偶数的概率.
查看答案
已知a为锐角,且sina=manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求tan(a-manfen5.com 满分网)的值
查看答案
平行四边形的一个顶点A在平面a内,其余顶点在a的同侧,已知其中有两个顶点到a的距离分别为1和2,那么剩下的一个顶点到平面a的距离可能是:
①1;②2;=3 ③3;④4;
以上结论正确的为    .(写出所有正确结论的编号) 查看答案
函数f(x)对于任意实数x满足条件f(x+2)=manfen5.com 满分网,若f(1)=-5,则f[f(5)]=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.