满分5 > 高中数学试题 >

在△ABC中,已知acosA=bcosB,则△ABC的形状是 .

在△ABC中,已知acosA=bcosB,则△ABC的形状是   
根据正弦定理把等式acosA=bcosB的边换成角的正弦,再利用倍角公式化简整理得sin2A=sin2B,进而推断A=B,或A+B=90°答案可得. 【解析】 根据正弦定理可知∵acosA=bcosB, ∴sinAcosA=sinBcosB ∴sin2A=sin2B ∴A=B,或2A+2B=180°即A+B=90°, 所以△ABC为等腰或直角三角形 故答案为△ABC为等腰或直角三角形.
复制答案
考点分析:
相关试题推荐
在△ABC中,如果(a+b+c)•(b+c-a)=3bc,则角A等于    查看答案
manfen5.com 满分网如图,F为双曲线C:manfen5.com 满分网=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方,M为左准线上一点,O为坐标原点.已知四边形OFPM为平行四边形,|PF|=λ|OF|.
(Ⅰ)写出双曲线C的离心率e与λ的关系式;
(Ⅱ)当λ=1时,经过焦点F且平行于OP的直线交双曲线于A、B点,若|AB|=12,求此时的双曲线方程.
查看答案
在等差数列{an}中,a1=1,前n项和Sn满足条件manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=anpan(p>0),求数列{bn}的前n项和Tn
查看答案
设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
查看答案
如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.