满分5 > 高中数学试题 >

数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*) (1)若数列{an...

数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*
(1)若数列{an+c}成等比数列,求常数c值;
(2)求数列{an}的通项公式an
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(1)利用递推公式可得an=sn-sn-1,利用等比数列的定义可求c (2)由递推公式an=sn-sn-1(n≥2),a1=s1求解 (3)假设存在as,ap,ar成等差数列,则2ap=as+ar,结合(2)中的通项公式进行推理. 【解析】 (1)由Sn=2an-3n及Sn+1=2an+1-3(n+1)得an+1=2an+3 ∴,∴c=3 (2)∵a1=S1=2a1-3,∴a1=3,an+3=(a1+3)•2n-1∴an=3.2n-3(n∈N*) (3)设存在S,P,r∈N*,且s<p<r使as,ap,ar成等差数列∴2ap=as+ar 即2(3•2p-3)=(3•2s-3)+(3•2r-3)∴2p+1=2s+2r ∴2p-s+1=1+2r-s∵s,p,r∈N*且s<p<r ∴2p-s+1、2r-s为偶数 1+2r-s为奇数矛盾,不存在满足条件的三项
复制答案
考点分析:
相关试题推荐
(1)设M(x,y)为抛物线y2=2x上的一个定点,过M作抛物线的两条互相垂直的弦MPMQ,求证:PQ恒过定点M′(x+2,2-y
(2)直线x+my+1=0与抛物线y2=2x交于点P,Q,在抛物线上是否存在点M,使得△MPQ为以PQ为斜边的直角三角形?
查看答案
求f(x)=(x-1)[2x2-(3a+4)x+9a-4]在区间[0,3]上的最大值与最小值,其中0<a<2.
查看答案
如图,PA⊥矩形ABCD所在平面,PA=AD=a,M,N分别是AB,PC的中点,
(1)求证:MN⊥平面PCD
(2)若AB=manfen5.com 满分网a,求二面角N-MD-C.

manfen5.com 满分网 查看答案
manfen5.com 满分网=(1,1),manfen5.com 满分网=(1,0),manfen5.com 满分网满足manfen5.com 满分网=0,且manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网>0
(I)求向量manfen5.com 满分网
(II)若映射manfen5.com 满分网
①求映射f下(1,2)原象;
②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由.
查看答案
已知α为锐角,且manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.