满分5 > 高中数学试题 >

在四面体P-ABC中,PA,PB,PC两两垂直,M是面ABC内一点,M到三个面P...

在四面体P-ABC中,PA,PB,PC两两垂直,M是面ABC内一点,M到三个面PAB,PBC,PCA的距离分别是2,3,6,则M到P的距离是( )
A.7
B.8
C.9
D.10
由题意画出图形,M到P的距离是,图形中长方体的对角线的长,求解即可. 【解析】 由于PA,PB,PC两两垂直,M是面ABC内一点, 作出长方体如图, M到三个面PAB,PBC,PCA的距离分别是2,3,6,则M到P的距离, 就是长方体的体对角线的长: 故选A.
复制答案
考点分析:
相关试题推荐
在△ABC中,AB=9,AC=15,∠BAC=120°,△ABC所在平面外一点P到三顶点A,B,C的距离都是14,则P到平面ABC的距离是( )
A.6
B.7
C.9
D.13
查看答案
设数列{an}满足:manfen5.com 满分网
(I)证明:manfen5.com 满分网对n∈N*恒成立;
(II)令manfen5.com 满分网,判断bn与bn+1的大小,并说明理由.
查看答案
设p>0是一常数,过点Q(2p,0)的直线与抛物线y2=2px交于相异两点A、B,以线段AB为直经作圆H(H为圆心).试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.

manfen5.com 满分网 查看答案
设函数f(x)=x(x-1)(x-a),(a>1)
(1)求导数f′(x)并证明f(x)有两个不同的极值点x1,x2
(2)若不等式f(x1)+f(x2)≤0成立,求a的取值范围.
查看答案
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF
(1)证明MF是异面直线AB与PC的公垂线;
(2)若PA=3AB,求直线AC与平面EAM所成角的正弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.