满分5 > 高中数学试题 >

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C...

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网
(1)由题意可知:平面AA1C1C⊥平面ABC,根据平面与平面垂直的性质定理可以得到,只要证明A1O⊥AC就行了. (2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转化成法向量n与所成的角去解决 (3)有了第(2)问的空间直角坐标系的建立,此题解决就方便多了,欲证OE∥平面A1AB,可以转化成证明OE与法向量n垂直 【解析】 (Ⅰ)证明:因为A1A=A1C,且O为AC的中点, 所以A1O⊥AC.(1分) 又由题意可知,平面AA1C1C⊥平面ABC, 交线为AC,且A1O⊂平面AA1C1C, 所以A1O⊥平面ABC.(4分) (Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系. 由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴, 所以得: 则有:.(6分) 设平面AA1B的一个法向量为n=(x,y,z),则有, 令y=1,得所以.(7分) .(9分) 因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(10分) (Ⅲ)设,(11分) 即,得 所以,得,(12分) 令OE∥平面A1AB,得,(13分) 即-1+λ+2λ-λ=0,得, 即存在这样的点E,E为BC1的中点.(14分)
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.
(Ⅰ)求证:CD∥平面A1EB;
(Ⅱ)求证:AB1⊥平面A1EB;
(Ⅲ)求直线B1E与平面AA1C1C所成角的正弦值.

manfen5.com 满分网 查看答案
如图,在三棱锥D-ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=manfen5.com 满分网,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求异面直线BD与CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

manfen5.com 满分网 查看答案
一个多面体的直观图和三视图(正视图、左视图、俯视图)如图所示,则三棱锥manfen5.com 满分网的体积为   
manfen5.com 满分网 查看答案
manfen5.com 满分网如果一个几何体的三视图如图所示,则此几何体的表面积是    查看答案
若一个正三棱柱的三视图及其尺寸如图所示(单位:cm),则该几何体的体积是    cm3
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.