如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅲ)当二面角B-PC-D的大小为
时,求PC与底面ABCD所成角的正切值.
考点分析:
相关试题推荐
如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
.
(Ⅰ)求点C到平面PBD的距离.
(Ⅱ)在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为
,若存在,指出点Q的位置,若不存在,说明理由.
查看答案
如图,已知直三棱柱ABC-A
1B
1C
1,∠ACB=90°,E是棱CC
1上动点,F是AB中点,AC=BC=2,AA
1=4.
(Ⅰ)求证:CF⊥平面ABB
1;
(Ⅱ)当E是棱CC
1中点时,求证:CF∥平面AEB
1.
查看答案
三棱柱ABC-A
1B
1C
1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB
1=2,M,N分别是AB,A
1C的中点.
(Ⅰ)求证:MN∥平面BCC
1B
1;
(Ⅱ)求证:MN⊥平面A
1B
1C.
查看答案
如图1所示,在边长为12的正方形ADD
1A
1中,点B,C在线段AD上,且AB=3,BC=4,作BB
1∥AA
1,分别交A
1D
1,AD
1于点B
1,P,作CC
1∥AA
1,分别交A
1D
1,AD
1于点C
1,Q,将该正方形沿BB
1,CC
1折叠,使得DD
1与AA
1重合,构成如图2所示的三棱柱ABC-A
1B
1C
1.
(Ⅰ)求证:AB⊥平面BCC
1B
1;
(Ⅱ)求四棱锥A-BCQP的体积;
(Ⅲ)求平面PQA与平面BCA所成锐二面角的余弦值.
查看答案
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,
,试确定λ的值,使得二面角Q-BD-P为45°.
查看答案