满分5 > 高中数学试题 >

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答...

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为manfen5.com 满分网,乙队中3人答对的概率分别为manfen5.com 满分网,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
(1)由题意甲队中每人答对的概率均为,故可看作独立重复试验,故, (2)AB为“甲、乙两个队总得分之和等于3”和“甲队总得分大于乙队总得分”同时满足,有两种情况:“甲得(2分)乙得(1分)”和“甲得(3分)乙得0分”这两个事件互斥,分别求概率,再取和即可. 【解析】 (Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且,,,. 所以ξ的分布列为 ξ的数学期望为. 解法二:根据题设可知,, 因此ξ的分布列为,k=0,1,2,3. 因为,所以. (Ⅱ)解法一:用C表示“甲得(2分)乙得(1分)”这一事件,用D表示“甲得(3分)乙得0分”这一事件,所以AB=C∪D,且C,D互斥,又=,, 由互斥事件的概率公式得. 解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3. 由于事件A3B,A2B1为互斥事件,故有P(AB)=P(A3B∪A2B1)=P(A3B)+P(A2B1). 由题设可知,事件A3与B独立,事件A2与B1独立,因此P(AB)=P(A3B)+P(A2B1)=P(A3)P(B)+P(A2)P(B1)=.
复制答案
考点分析:
相关试题推荐
如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=manfen5.com 满分网
(Ⅰ)求点C到平面PBD的距离.
(Ⅱ)在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为manfen5.com 满分网,若存在,指出点Q的位置,若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的值域.
查看答案
给出以下几个命题:
①由曲线y=x2与直线y=2x围成的封闭区域的面积为manfen5.com 满分网
②已知点A是定圆C上的一个定点,线段AB为圆的动弦,若manfen5.com 满分网,O为坐标原点,则动点P的轨迹为圆;
③把5本不同的书分给4个人,每人至少1本,则不同的分法种数为A54•A41=480种;
④若直线l∥平面α,直线l⊥直线m,直线l⊂平面β,则β⊥α.
其中,正确的命题有    .(将所有正确命题的序号都填在横线上) 查看答案
在平面直角坐标系xOy中,直线l的参数方程为manfen5.com 满分网(参数t∈R),圆C的参数方程为manfen5.com 满分网,(参数θ∈[0,2π]),则圆C的圆心坐标为     ,圆心到直线l的距离为     查看答案
manfen5.com 满分网右面框图表示的程序所输出的结果是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.