满分5 > 高中数学试题 >

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2...

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
(1)本题由条件Sn+1+Sn-1=2Sn+1,借助项与和关系Sn-Sn-1=an,可确定数列为等差数列,进而求出数列{an}的通项公式an=n+1. (2)由an通项写出bn的通项,欲证明数列为递增数列,可借助作差法证明bn+1-bn>0即可,进行整理变形即转化为对(-1)n-1λ<2n-1(n∈N*)恒成立的证明.借此讨论N的奇数偶数两种情况就可求出λ的范围,再综合λ为非零的整数即可确定λ的具体取值. 【解析】 (1)由已知,(Sn+1-Sn)-(Sn-Sn-1)=1(n≥2,n∈N*), 即an+1-an=1(n≥2,n∈N*),且a2-a1=1. ∴数列{an}是以a1=2为首项,公差为1的等差数列. ∴an=n+1. (2)∵an=n+1, ∴bn=4n+(-1)n-1λ•2n+1,要使bn+1>bn恒成立, ∴bn+1-bn=4n+1-4n+(-1)nλ•2n+2-(-1)n-1λ•2n+1>0恒成立, ∴3•4n-3λ•(-1)n-12n+1>0恒成立, ∴(-1)n-1λ<2n-1恒成立. (ⅰ)当n为奇数时,即λ<2n-1恒成立, 当且仅当n=1时,2n-1有最小值为1, ∴λ<1. (ⅱ)当n为偶数时,即λ>-2n-1恒成立, 当且仅当n=2时,-2n-1有最大值-2, ∴λ>-2. 即-2<λ<1,又λ为非零整数,则λ=-1. 综上所述,存在λ=-1,使得对任意n∈N*,都有bn+1>bn.
复制答案
考点分析:
相关试题推荐
在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
查看答案
已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为manfen5.com 满分网,乙队中3人答对的概率分别为manfen5.com 满分网,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
查看答案
如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=manfen5.com 满分网
(Ⅰ)求点C到平面PBD的距离.
(Ⅱ)在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为manfen5.com 满分网,若存在,指出点Q的位置,若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.