满分5 > 高中数学试题 >

点P从(1,0)点出发,沿单位圆x2+y2=1按逆时针方向转动弧长到达Q点,则Q...

点P从(1,0)点出发,沿单位圆x2+y2=1按逆时针方向转动manfen5.com 满分网弧长到达Q点,则Q的坐标为( )
A.(-manfen5.com 满分网manfen5.com 满分网
B.(-manfen5.com 满分网,-manfen5.com 满分网
C.(-manfen5.com 满分网,-manfen5.com 满分网
D.(-manfen5.com 满分网,-manfen5.com 满分网
先求出OQ的倾斜角等于,Q就是角2π3的终边与单位圆的交点,Q的横坐标的余弦值,Q的纵坐标角的正弦值. 【解析】 P从(1,0)点出发,沿单位圆x2+y2=1按逆时针方向转动2π3弧长到达Q点时,OQ的倾斜角等于, 即 P点按逆时针方向转过的角为α=弧度, 所以,Q点的坐标为(cos,sin),即(-,). 故选 A.
复制答案
考点分析:
相关试题推荐
设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )
A.{2}
B.{3}
C.{1,2,4}
D.{1,4}
查看答案
已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
查看答案
在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
查看答案
已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为manfen5.com 满分网,乙队中3人答对的概率分别为manfen5.com 满分网,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.