满分5 > 高中数学试题 >

已知各项均为正数的数列{an}的前n项和满足S1>1,且6Sn=(an+1)(a...

已知各项均为正数的数列{an}的前n项和满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)设数列{bn}满足manfen5.com 满分网,并记Tn为{bn}的前n项和,求证:3Tn+1>log2(an+3),n∈N*
(1)先根据题设求得a1,进而根据an+1=Sn+1-Sn整理得(an+1+an)(an+1-an-3)=0求得an+1-an=3,判断出{an}是公差为3,首项为2的等差数列,则数列的通项公式可得. (2)把(1)中的an代入可求得bn,进而求得前n项的和Tn,代入到3Tn+1-log2(an+3)中,令,进而判断出f(n+1)>f(n),从而推断出3Tn+1-log2(an+3)=log2f(n)>0,原式得证. 【解析】 (1)由,解得a1=1或a1=2,由假设a1=S1>1,因此a1=2, 又由, 得(an+1+an)(an+1-an-3)=0, 即an+1-an-3=0或an+1=-an,因an>0,故an+1=-an不成立,舍去 因此an+1-an=3,从而{an}是公差为3,首项为2的等差数列, 故{an}的通项为an=3n-1 证明:由可解得; 从而 因此 令,则、 因(3n+3)3-(3n+5)(3n+2)2=9n+7>0,故f(n+1)>f(n) 特别地,从而3Tn+1-log2(an+3)=log2f(n)>0、 即3Tn+1>log2(an+3)
复制答案
考点分析:
相关试题推荐
如图,倾斜角为a的直线经过抛物线y2=8x的焦点F,且于抛物线交于A、B两点.
(Ⅰ)求抛物线的焦点F的坐标及准线l的方程
(Ⅱ)若a为锐角,作线段AB的垂线平分m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.

manfen5.com 满分网 查看答案
用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
查看答案
如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=1,BC=manfen5.com 满分网,AA1=2;点D在棱BB1上,BD=manfen5.com 满分网BB1
B1E⊥A1D,垂足为E,求:
(Ⅰ)异面直线A1D与B1C1的距离;
(Ⅱ)四棱锥C-ABDE的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的定义域;
(Ⅱ)若角α在第一象限且manfen5.com 满分网,求f(α).
查看答案
设甲、乙两人每次射击命中目标的概率分别为manfen5.com 满分网,且各次射击相互独立.
(Ⅰ)若甲、乙各射击一次,求甲命中但乙未命中目标的概率;
(Ⅱ)若甲、乙各射击两次,求两人命中目标的次数相等的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.