满分5 > 高中数学试题 >

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f...

已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>-2,总存x∈(-2,t),满足manfen5.com 满分网,并确定这样的x的个数.
(Ⅰ)首先求出函数的导数,然后根据导数与函数单调区间的关系确定t的取值范围, (Ⅱ)运用函数的极小值进行证明, (Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定. (Ⅰ)【解析】 因为f′(x)=(2x-3)ex+(x2-3x+3)ex, 由f′(x)>0⇒x>1或x<0, 由f′(x)<0⇒0<x<1, ∴函数f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, ∵函数f(x)在[-2,t]上为单调函数, ∴-2<t≤0, (Ⅱ)证:因为函数f(x)在(-∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减, 所以f(x)在x=1处取得极小值e, 又f(-2)=13e-2<e, 所以f(x)在[2,+∞)上的最小值为f(-2), 从而当t>-2时,f(-2)<f(t), 即m<n, (Ⅲ)证:因为, ∴, 即为x2-x=, 令g(x)=x2-x-, 从而问题转化为证明方程g(x)==0在(-2,t)上有解并讨论解的个数, 因为g(-2)=6-(t-1)2=-, g(t)=t(t-1)-=, 所以当t>4或-2<t<1时,g(-2)•g(t)<0, 所以g(x)=0在(-2,t)上有解,且只有一解, 当1<t<4时,g(-2)>0且g(t)>0, 但由于g(0)=-<0, 所以g(x)=0在(-2,t)上有解,且有两解, 当t=1时,g(x)=x2-x=0, 解得x=0或1, 所以g(x)=0在(-2,t)上有且只有一解, 当t=4时,g(x)=x2-x-6=0, 所以g(x)=0在(-2,t)上也有且只有一解, 综上所述,对于任意的t>-2,总存在x∈(-2,t),满足, 且当t≥4或-2<t≤1时,有唯一的x适合题意, 当1<t<4时,有两个x适合题意.
复制答案
考点分析:
相关试题推荐
过x轴上的动点T(t,0),引抛物线y=x2+1两条切线TP,TQ,P,Q为切点.
(Ⅰ)求证:直线PQ过定点N,并求出定点N坐标;
(Ⅱ)若t≠0,设弦PQ的中点为M,试求S△OTM|OT|的最小值(O为坐标原点).

manfen5.com 满分网 查看答案
如图,已知平面α∩平面β=MN,A∈α,B∈β,C∈MN且∠ACM=60°,∠BCN=45°,二面角A-MN-B=60°,AC=2.
(Ⅰ)求点A到平面β的距离;
(Ⅱ)设二面角A-BC-M的大小为θ,求tanθ的值.

manfen5.com 满分网 查看答案
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为manfen5.com 满分网与p,且乙投球2次均未命中的概率为manfen5.com 满分网
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
查看答案
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
已知函数manfen5.com 满分网(x∈R,且x≠0)若实数a,b使得函数y=f(x)在定义域上有两个零点,则a2+b2的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.