满分5 > 高中数学试题 >

设函数f(x)=(1+x)2-2ln(1+x). (Ⅰ)求f (x)的单调区间;...

设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当manfen5.com 满分网时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
(Ⅰ)已知f(x)=(1+x)2-2ln(1+x)求出函数的导数f′(x),然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解; (Ⅱ)由题意当时,不等式f (x)<m恒成立,只要求出f(x)的最大值小于m就可以了,从而求出实数m的取值范围; (Ⅲ)已知方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,整理移项得方程g(x)=x-a+1-2ln(1+x)=0在区间[0,2]上恰好有两个相异的实根,利用函数的增减性得根,于是有,从而求出实数a的取值范围. 【解析】 (Ⅰ)函数的定义域为(-1,+∞).(1分) ∵, 由f′(x)>0,得x>0;由f′(x)<0,得-1<x<0.(3分) ∴f(x)的递增区间是(0,+∞),递减区间是(-1,0).(4分) (Ⅱ)∵由,得x=0,x=-2(舍去) 由(Ⅰ)知f(x)在上递减,在[0,e-1]上递增. 高三数学(理科)答案第3页(共6页) 又,f(e-1)=e2-2,且. ∴当时,f(x)的最大值为e2-2. 故当m>e2-2时,不等式f(x)<m恒成立.(9分) (Ⅲ)方程f(x)=x2+x+a,x-a+1-2ln(1+x)=0. 记g(x)=x-a+1-2ln(1+x), ∵, 由g′(x)>0,得x>1或x<-1(舍去).由g′(x)<0,得-1<x<1. ∴g(x)在[0,1]上递减,在[1,2]上递增. 为使方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根, 只须g(x)=0在[0,1]和(1,2]上各有一个实数根,于是有 ∵2-2ln2<3-2ln3, ∴实数a的取值范围是2-2ln2<a≤3-2ln3.(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足manfen5.com 满分网,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的大小;
(Ⅲ)若异面直线AB与DE所成角的余弦值为manfen5.com 满分网,求k的值.
查看答案
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑色球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案
已知m∈R,manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅰ)当m=-1时,求使不等式manfen5.com 满分网成立的x的取值范围;
(Ⅱ)求使不等式manfen5.com 满分网成立的x的取值范围.
查看答案
设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(3,0)处(允许重复过此点),则质点不同的运动方法共有    种(用数字作答);若经过m次跳动质点落在点(n,0)处(允许重复过此点),其中m≥n,且m-n为偶数,则质点不同的运动方法共有    种. 查看答案
manfen5.com 满分网是偶函数,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.