满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△...

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为manfen5.com 满分网.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0,manfen5.com 满分网)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;
(Ⅲ)已知点M(manfen5.com 满分网),N(0,1),在(Ⅱ)的条件下,是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求出k的值;如果不存在,请说明理由.
(Ⅰ)利用条件找到,得动点C的轨迹是以A、B为焦点,长轴长为的椭圆除去与x轴的两个交点.代入椭圆的方程即可. (Ⅱ)直线l与曲线W有两个不同的交点P和Q,等价于把直线方程和椭圆方程联立后对应的方程有两个不等根,利用其判别式大于0即可. (Ⅲ)先把直线方程和椭圆方程联立后找到向量的坐标,利用向量与共线求出对应的k的取值,看其是否让(Ⅱ)成立即可. 【解析】 (Ⅰ)设C(x,y), ∵|AC|+|BC|+|AB|=2+2,|AB|=2, ∴|AC|+|BC|=2>2, ∴由定义知,动点C的轨迹是以A、B为焦点,长轴长为2的椭圆除去与x轴的两个交点. ∴a=,c=1.∴b2=a2-c2=1. ∴W:=1(y≠0).(2分) (Ⅱ)设直线l的方程为y=kx+,代入椭圆方程,得=1. 整理,得kx+1=0.①(5分) 因为直线l与椭圆有两个不同的交点P和Q等价于-2>0,解得k<-或k>. ∴满足条件的k的取值范围为(7分) (Ⅲ)设P(x1,y1),Q(x2,y2),则=(x1+x2,y1+y2), 由①得x1+x2=-.② 又y1+y2=k(x1+x2)+2③ 因为,N(0,1),所以.(11分) 所以与共线等价于x1+x2=-. 将②③代入上式,解得k=. 所以不存在常数k,使得向量与共线.(13分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当manfen5.com 满分网时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
查看答案
manfen5.com 满分网已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足manfen5.com 满分网,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的大小;
(Ⅲ)若异面直线AB与DE所成角的余弦值为manfen5.com 满分网,求k的值.
查看答案
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑色球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案
已知m∈R,manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅰ)当m=-1时,求使不等式manfen5.com 满分网成立的x的取值范围;
(Ⅱ)求使不等式manfen5.com 满分网成立的x的取值范围.
查看答案
设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(3,0)处(允许重复过此点),则质点不同的运动方法共有    种(用数字作答);若经过m次跳动质点落在点(n,0)处(允许重复过此点),其中m≥n,且m-n为偶数,则质点不同的运动方法共有    种. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.