满分5 > 高中数学试题 >

在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为( ) A.ρcosθ=2 ...

在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为( )
A.ρcosθ=2
B.ρsinθ=2
C.ρ=4sin(θ+manfen5.com 满分网
D.ρ=4sin(θ-manfen5.com 满分网
本选择题利用直接法求解,把极坐标转化为直角坐标.即利用ρ2=x2+y2,ρsinθ=y,极坐标方程转化为直角坐标方程后进行判断即可. 【解析】 ρ=4sinθ的普通方程为: x2+(y-2)2=4, 选项A的ρcosθ=2的普通方程为x=2. 圆x2+(y-2)2=4与直线x=2显然相切. 故选A.
复制答案
考点分析:
相关试题推荐
(Ⅰ)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值;
(Ⅱ)设a1,b1(k=1,2…,n)均为正数,证明:
(1)若a1b1+a2b2+…anbn≤b1+b2+…bn,则manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网≤1;
(2)若b1+b2+…bn=1,则manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网≤b12+b22+…+bn2
查看答案
平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
查看答案
已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn (n∈N*,r∈R,r≠-1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.
查看答案
如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(Ⅰ)当CF=1时,求证:EF⊥A1C;
(Ⅱ)设二面角C-AF-E的大小为θ,求tanθ的最小值.

manfen5.com 满分网 查看答案
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.