满分5 > 高中数学试题 >

如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点....

manfen5.com 满分网如图,在圆锥PO中,已知PO=manfen5.com 满分网,⊙O的直径AB=2,C是manfen5.com 满分网的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.
(Ⅰ)连接OC,先根据△AOC是等腰直角三角形证出中线OD⊥AC,再结合PO⊥AC证出AC⊥POD,利用平面与平面垂直的判定定理,可证出平面POD⊥平面PAC; (Ⅱ)过O分别作OH⊥PD于H,OG⊥PA于G,再连接GH,根据三垂线定理证明∠OGH为二面角B-PA-C的平面角,最后分别在Rt△ODA、Rt△ODP、Rt△OGH中计算出OH、OG和sin∠OGH,最后求出所求二面角的余弦值. 【解析】 (Ⅰ)连接OC, ∵OA=OC,D是AC的中点 ∴AC⊥OD 又∵PO⊥底面⊙O,AC⊂底面⊙O ∴AC⊥PO ∵OD、PO是平面POD内的两条相交直线 ∴AC⊥平面POD, 而AC⊂平面PAC ∴平面POD⊥平面PAC (Ⅱ)在平面POD中,过O作OH⊥PD于H,由(Ⅰ)知,平面POD⊥平面PAC 所以OH⊥平面PAC, 又∵PA⊂平面PAC ∴PA⊥HO 在平面PAO中,过O作OG⊥PA于G,连接GH,则有PA⊥平面OGH,从而PA⊥HG.故∠OGH为二面角B-PA-C的平面角 在Rt△ODA中,OD=OA•sin45°= 在Rt△ODP中,OH= 在Rt△OPA中,OG= 在Rt△OGH中,sin∠OGH= 所以cos∠OGH= 故二面角B-PA-C的余弦值为
复制答案
考点分析:
相关试题推荐
某商店试销某种商品20天,获得如下数据:
日销售量(件)123
频数1595
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
对于n∈N+,将n 表示n=a×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×2,当i=0时,ai=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×2,4=1×22+0×21+0×2,故I(1)=0,I(4)=2),则
(1)I(12)=    ;(2)manfen5.com 满分网=    查看答案
manfen5.com 满分网如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=    ;           
(2)P(B|A)=    查看答案
在边长为1的正三角形ABC中,设manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.