满分5 > 高中数学试题 >

已知函数f(x)=x3,g (x)=x+. (Ⅰ)求函数h (x)=f(x)-g...

已知函数f(x)=x3,g (x)=x+manfen5.com 满分网
(Ⅰ)求函数h (x)=f(x)-g (x)的零点个数.并说明理由;
(Ⅱ)设数列{ an}(n∈N*)满足a1=a(a>0),f(an+1)=g(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.
(Ⅰ)由h(x)=知,x∈[0,+∞),而h(0)=0,且h(1)=-1<0,h(2)=6-,再研究函数在(0,+∞)上的单调性,以确定零点个数即可 (Ⅱ)记h(x)的正零点为x,即,当a<x时,由a1=a,即a1<x,而,a2<x.由此猜测an<x.当a≥x时,由(Ⅰ)知,当x∈(x1,+∞)时,h(x)单调递增,h(a)>h(x)=0,从而a2<a,由此猜测an<a.然后用数学归纳法证明. 【解析】 (Ⅰ)由h(x)=知,x∈[0,+∞),而h(0)=0,且h(1)=-1<0,h(2)=6-,则x=0为h(x)的一个零点,且h(x)在(1,2)内有零点, ∴h(x)至少有两个零点. 由h(x)=,记,则, 当x∈(0,+∞)时,g(x)单调递增,故可判断出h(x)在(0,+∞)仅有一个零点, 综上所述,h(x)有且只有两个零点. (Ⅱ)记h(x)的正零点为x,即, (1)当a<x时,由a1=a,即a1<x,而,∴a2<x. 由此猜测an<x.下面用数学归纳法证明: ①当n=1时,a1<x,成立. ②假设当n=k时ak<x成立,则当n=k+1时,由,知ak+1<x. 因此当n=k+1时,ak+1<x成立. 故对任意的n∈N*,an≤x成立. (2)当a≥x时,由(Ⅰ)知,当x∈(x,+∞)时,h(x)单调递增,∴h(a)h(x)=0,从而a2≤a,由此猜测an≤a.下面用数学归纳法证明: ①当n=1时,a1≤a,成立. ②假设当n=k时ak<a成立,则当n=k+1时,由,知ak+1<a. 因此当n=k+1时,ak+1<a成立.故对任意的n∈N*,an≤a成立. 综上所述,存在常数M,使得对于任意的n∈N*,都有an≤M.
复制答案
考点分析:
相关试题推荐
如图,椭圆C1manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得manfen5.com 满分网=manfen5.com 满分网?请说明理由.

manfen5.com 满分网 查看答案
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为manfen5.com 满分网;(2)其它面的淋雨量之和,其值为manfen5.com 满分网,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=manfen5.com 满分网时.
(Ⅰ)写出y的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在圆锥PO中,已知PO=manfen5.com 满分网,⊙O的直径AB=2,C是manfen5.com 满分网的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.
查看答案
某商店试销某种商品20天,获得如下数据:
日销售量(件)123
频数1595
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.