满分5 > 高中数学试题 >

已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x...

已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( )
A.4
B.3
C.2
D.1
观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数. 【解析】 联立两集合中的函数关系式得: , 由②得:x=1-y,代入②得:y2-y=0即y(y-1)=0,解得y=0或y=1, 把y=0代入②解得x=1,把y=1代入②解得x=0, 所以方程组的解为或,有两解, 则A∩B的元素个数为2个. 故选C
复制答案
考点分析:
相关试题推荐
设复数z满足iz=1,其中i为虚数单位,则z=( )
A.-i
B.i
C.-1
D.1
查看答案
平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
查看答案
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(I) 求a、b的值,并写出切线l的方程;
(II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
查看答案
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案
如图,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3manfen5.com 满分网,点E在侧棱AA1上,点F在侧棱BB1上,且AE=2manfen5.com 满分网,BF=manfen5.com 满分网
(I) 求证:CF⊥C1E;
(II) 求二面角E-CF-C1的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.