设b>0,数列{a
n}满足a
1=b,a
n=
(n≥2)
(1)求数列{a
n}的通项公式;
(4)证明:对于一切正整数n,2a
n≤b
n+1+1.
考点分析:
相关试题推荐
设a>0,讨论函数f(x)=lnx+a(1-a)x
2-2(1-a)x的单调性.
查看答案
如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为
的中点,O
1,O
1′,O
2,O
2′分别为CD,C′D′,DE,D′E′的中点.
(1)证明:O
1′,A′,O
2,B四点共面;
(2)设G为A A′中点,延长A′O
1′到H′,使得O
1′H′=A′O
1′.证明:BO
2′⊥平面H′B′G
查看答案
在某次测验中,有6位同学的平均成绩为75分.用x
n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩x
6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案
已知函数f(x)=2sin(
x-
),x∈R.
(1)求f(0)的值;
(2)设α,β∈
,f(3
)=
,f(3β+
)=
.求sin(α+β)的值.
查看答案
如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为
.
查看答案