满分5 > 高中数学试题 >

在平面直角坐标系xOy中,直线l:x=-2交x轴于点A,设P是l上一点,M是线段...

在平面直角坐标系xOy中,直线l:x=-2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,-1),设H是E 上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
(1)由于直线l:x=-2交x轴于点A,所以A(-2,0),由于P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程; (2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,-1),又H是E 上动点,点O及点T都为定点,利用图形即可求出; (3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求. 【解析】 (1)如图所示,连接OM,则|PM|=|OM|∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y) ①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4  (x≥-1)②当M在x的负半轴上时,y=0(x<-1)综上所述,点M的轨迹E的方程为y2=4x+4  (x≥-1)或y=0(x<-1) (2)由题意画出图形如下: ∵由(1)知道动点M 的轨迹方程为:y2=4(x+1). 是以(-1,0)为顶点,以O(0,0)为焦点,以x=-2为准线的抛物线, 由H引直线HB垂直准线x=-2与B点,则 利用抛物线的定义可以得到:|HB|=|HO|, ∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值, 由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值, 故|HO|+|HT|的最小值时的H.  (3)如图,设抛物线顶点A(-1,0),则直线AT的斜率∵点T(1,-1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点 ②当时,直线l1与轨迹E有且只有三个不同的交点 ③当K=0时,直线l1与轨迹E有且只有一个交点 ④当K>0时,直线l1与轨迹E有且只有两个不同的交点综上所述,直线l1的斜率K的取值范围是 (-]∪(0,+∞)  
复制答案
考点分析:
相关试题推荐
设b>0,数列{an}满足a1=b,an=manfen5.com 满分网(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.
查看答案
设a>0,讨论函数f(x)=lnx+a(1-a)x2-2(1-a)x的单调性.
查看答案
如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为manfen5.com 满分网的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.
(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′Gmanfen5.com 满分网
查看答案
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n12345
成绩xn7076727072
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案
已知函数f(x)=2sin(manfen5.com 满分网x-manfen5.com 满分网),x∈R.
(1)求f(0)的值;
(2)设α,β∈manfen5.com 满分网,f(3manfen5.com 满分网)=manfen5.com 满分网,f(3β+manfen5.com 满分网)=manfen5.com 满分网.求sin(α+β)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.