满分5 > 高中数学试题 >

中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,...

中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为manfen5.com 满分网,则双曲线方程为( )
A.x2-y2=1
B.x2-y2=2
C.x2-y2=manfen5.com 满分网
D.x2-y2=manfen5.com 满分网
由题意,设双曲线方程为 -=1(a>0),利用焦点到渐近线的距离等于,求出待定系数 a2 . 【解析】 由题意,设双曲线方程为-=1(a>0), 则c=a,渐近线y=x,∴=,∴a2=2. ∴双曲线方程为x2-y2=2. 故选B
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,直线l:x=-2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,-1),设H是E 上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
查看答案
设b>0,数列{an}满足a1=b,an=manfen5.com 满分网(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.
查看答案
设a>0,讨论函数f(x)=lnx+a(1-a)x2-2(1-a)x的单调性.
查看答案
如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为manfen5.com 满分网的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.
(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′Gmanfen5.com 满分网
查看答案
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n12345
成绩xn7076727072
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.